LETTERS TO THE EDITOR

To the Editor:

In "Calculation of Densities from Cubic Equations of State," (April 2002), Deiters¹ reported that Cardano's method was not the fastest algorithm for finding the roots of a cubic polynomial, and he proposed an algorithm based on iteration that was found to be faster than Cardano's method. My finding was the contrary, as shown later in this letter.

A cubic polynomial to be solved is Eq. 5, the normalized form, in Deiters, and the computer program for Cardano's method in C/C++ language is partially shown below:

$$p = b1 - b2*b2/3.;$$
 (1)

$$q = b0 - b1*b2/3. + 2.*b2*b2*b2/27.;$$

$$a2 = b2/3$$
.: (3)

$$d = p*p*p/27. + q*q/4.;$$
 (4)

If d > 0, there is one real root (x0) as follows:

$$arg = pow(-q/2. + sqrt(d), (1./3.));$$
(5)

$$x0 = arg - (p/3.)/arg - a2;$$
 (6)

Otherwise, there are three real roots (x0, x1, and x2):

theta

=
$$a\cos(-q/2.*sqrt(-27./(p*p*p)));$$

Table 1. CPU Time Required to Determine All Roots of a Cubic Polynomial

Temperature (K)	Pressure (atm)	Time (μs)	
		Cardano's Method	Deiters' Iterative Method
300*	11.81	0.821	1.262
320*	18.51	0.821	1.261
340*	27.39	0.821	1.422
350*	32.72	0.821	1.422
360**	38.68	0.751	1.302
370**	45.27	0.751	1.302

^{*}Three real roots.

$$rootq = 2.*sqrt(-p/3.); (8)$$

$$x0 = rootq*cos(theta/3.) - a2; (9)$$

$$x1 = rootq*cos((theta + 2.*M_PI)/3.)$$

$$-a2;$$
 (10)

$$x2 = rootq*cos((theta + 4.*M_PI)/3.)$$

The previous program was made as efficient as possible by taking into consideration of

- (1) using "slow" functions (such as pow, sqrt, and trigonometric functions) sparingly or only when they were necessary
- (2) as much as possible replacing the "slow" functions with mathematical operations that were very quick in execution
- (3) avoiding repeats of the same calculation which especially used "slow" functions

The above-mentioned consideration was also used for Deiters' iterative method.

An example in Walas,² for solving the compressibility factors of the Redlich-Kwong EOS, was used to compare the

execution speed of Cardano's method and Deiters' iterative method. As suggested by Deiters,¹ Cardano's method was always followed with a Newton iteration step for one root of interest to guarantee the root's precision of 10⁻¹⁵ or better. The same precision was also guaranteed for Deiters' iterative method.

Test runs on a personal computer [Dell Series GX280 (processor Intel Pentium 4, 3.6 GHz)] showed that, when efficient computer codes were written, Cardano's method was still faster than Deiters' iterative method, as seen in Table 1.

Literature Cited

- Deiters UK. Calculation of densities from cubic equations of state, AIChE J. 2002;48: 882-886.
- Walas SM. Phase Equilibria in Chemical Engineering. Stoneham,

MA: Butterworth Publishers; 1985 (see example 1.13, p. 49).

Paul H. Salim
Dept. of Coiled Tubing Research
& Engineering
BJ Services Company
6620 36th Street S.E.
Calgary, Alberta, Canada T2C 2G4
e-mail: psalim@bjservices.ca

^{**}One real root.

AIChE Journal, Vol. 51, 000–000 (2005) © 2005 American Institute of Chemical Engineers

DOI 10.1002/aic.10659

Published online August 19, 2005 in Wiley Inter-Science (www.interscience.wiley.com).